If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x-8x^2-2.5=0
a = -8; b = 10; c = -2.5;
Δ = b2-4ac
Δ = 102-4·(-8)·(-2.5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{5}}{2*-8}=\frac{-10-2\sqrt{5}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{5}}{2*-8}=\frac{-10+2\sqrt{5}}{-16} $
| 5y^2+21y-4=0 | | 3^(2x+1)+5=16(3^x) | | (1.5x^2)(1.2x^2)=0 | | 3x+16=+1-2x | | n÷6=3 | | 7x-6=2+17 | | 7x-6=2x=17 | | 4.4x=50.6 | | 7+9x=63=x | | 2n+0.2n=220 | | 7k^2+38k-24=0 | | 4^x-4=32 | | 48=y(16-y) | | 6x−4=20 | | 6+30x=20x+10= | | 26(x+8)=13(2×+8) | | 5x+24=15x-34 | | 6x+2x+4x=72 | | (x-1)(x-1)-4=0 | | 2.5(2+2x)+2.5(2+2x)+x+x=(2+2x+x+x+2+2x) | | (.9t^2)+(2t)-50=0 | | (-8x-1)3+1.5=-9.5 | | 0.9t^2+2t-50=0 | | 4x(x+2)+3=(2x+1)(2x+3 | | 2y=3y–10 | | (5+5x-2.5+5+5x-2.5)=(2x+2x+2+2+x+x) | | 1.2x+15=39 | | 6y2+29y+20=0 | | (4x+1000)=50000 | | 10x-1=330 | | 4+(x-5)=4+(×-5) | | 4+x-5=4+×-5 |